Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli.
نویسندگان
چکیده
Chemotactic responses in Escherichia coli are typically mediated by transmembrane receptors that monitor chemoeffector levels with periplasmic binding domains and communicate with the flagellar motors through two cytoplasmic proteins, CheA and CheY. CheA autophosphorylates and then donates its phosphate to CheY, which in turn controls flagellar rotation. E. coli also exhibits chemotactic responses to substrates that are transported by the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system (PTS). Unlike conventional chemoreception, PTS substrates are sensed during their uptake and concomitant phosphorylation by the cell. The phosphoryl groups are transferred from PEP to the carbohydrates through two common intermediates, enzyme I (EI) and phosphohistidine carrier protein (HPr), and then to sugar-specific enzymes II. We found that in mutant strains HPr-like proteins could substitute for HPr in transport but did not mediate chemotactic signaling. In in vitro assays, these proteins exhibited reduced phosphotransfer rates from EI, indicating that the phosphorylation state of EI might link the PTS phospho-relay to the flagellar signaling pathway. Tests with purified proteins revealed that unphosphorylated EI inhibited CheA autophosphorylation, whereas phosphorylated EI did not. These findings suggest the following model for signal transduction in PTS-dependent chemotaxis. During uptake of a PTS carbohydrate, EI is dephosphorylated more rapidly by HPr than it is phosphorylated at the expense of PEP. Consequently, unphosphorylated EI builds up and inhibits CheA autophosphorylation. This slows the flow of phosphates to CheY, eliciting an up-gradient swimming response by the cell.
منابع مشابه
Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC.
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) plays a major role in the ability of Escherichia coli to migrate toward PTS carbohydrates. The present study establishes that chemotaxis toward PTS substrates in Bacillus subtilis is mediated by the PTS as well as by a methyl-accepting chemotaxis protein (MCP). As for E. coli, a B. subtilis ptsH null mutant is severely deficient ...
متن کاملMethylation-independent aerotaxis mediated by the Escherichia coli Aer protein.
Aer is a membrane-associated protein that mediates aerotactic responses in Escherichia coli. Its C-terminal half closely resembles the signaling domains of methyl-accepting chemotaxis proteins (MCPs), which undergo reversible methylation at specific glutamic acid residues to adapt their signaling outputs to homogeneous chemical environments. MCP-mediated behaviors are dependent on two specific ...
متن کاملRequirement of the cheB function for sensory adaptation in Escherichia coli.
The chemotactic behavior of Escherichia coli mutants defective in cheB function, which is required to remove methyl esters from methyl-accepting chemotaxis proteins, was investigated by subjecting swimming or antibody-tethered cells to various attractant chemicals. Two cheB point mutants, one missense and one nonsense, exhibited stimulus response times much longer than did the wild type, but th...
متن کاملRequirement of the cheB Function for Sensory Adaptation in Escherichia coli HIROYUKI YONEKAWA
The chemotactic behavior of Escherichia coli mutants defective in cheB function, which is required to remove methyl esters from methyl-accepting chemotaxis proteins, was investigated by subjectitng swimming or antibodytethered cells to various attractant chemicals. Two cheB point mutants, one missense and one nonsense, exhibited stimulus response times much longer than did the wild type, but th...
متن کاملEnzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product.
The methyl-accepting chemotaxis proteins (MCPs) of Escherichia coli undergo reversible methylation that has been correlated with adaptation of cells to environmental stimuli. MCPI, the product of the tsr gene, accepts methyl groups at multiple sites that are located on two tryptic peptides, denoted K1 and R1. A second modification of the MCPs, which is not methylation, has been designated the C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 25 شماره
صفحات -
تاریخ انتشار 1995